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Intoduction

• Mechanism of Confinement : On the lattice there is evidence

of flux tube formation.

• Conjecture : Flux tube ≡ bosonic

string.
q− q

• Effective theories for flux tubes (hadronic strings) .

Energy states En(R) = σ R
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σ : string tension , d : # of space time dimensions

• Write down most general (series) action with vanishing con-

formal anomaly in any dimension. [Polchinski & Strominger]



• Write down action as a series in 1/r (r : length of flux tube)

and impose open-closed duality. [Lüscher & Weisz]

Open-closed duality constrains possible string spectra.

Forbids 1/R2 terms in the effective string action.

• Spectrum in PS prescription is universal to O(R−3) and to

this order it coincides with the NG spectrum.

[Drummond, Hari Dass & Matlock, Kuti, Maresca]

• LW formulation: To O(R−3), spectrum same as NG in 3-d.

In 4-d one free parameter exists. [Lüscher & Weisz]

• Nambu-Goto partition function respects open-closed duality.



Observables on the lattice

• Polyakov loop correlators:

Accurate ground state energy.

〈P †P(r)〉 =
∞∑

i=0

bi exp[−Ei(r)Nt]

t=0

t=Nt

Polyakov  Loopcorrelator

• Wilson loops :

Suitable for excited states

W (r,∆T) =
∑

α
βα

i βα
j e−Eα(r)∆T t=T

t=T

1

2

qq
Wilson  Loop

flux tube

_

• The string pictures holds at large r ⇒ large loops.



• Note that W (r,∆T) ∝ exp(−r∆T)

• Since we need large r, we must either work with small ∆T ,

or have the means to extract exponentially suppressed signals

from the noise.

• 1st alternative has been followed by Kuti et.al. using asym-

metric lattices and a very large number of basis states.

• Advances in algorithms (e.g. multilevel schemes) and com-

puting power now allow for exponential error reduction and

reliable extraction of expectation values of large Wilson loops.



Algorithm - Ground State

• a ⊗ b = T1(2,2,2,2)

•

(T1)ijkl(T2)jmln=(Tp1)imkn

Averaging is carried out for

Tp1.

• The averaged Tp’s are

multiplied together to form

the averaged propagator

Tf.

• L1, L2 & Tf are multiplied

together to produce the Wil-

son loop.
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Important parameters of the algorithm : time slice thickness
- Tp1 & the number of sublattice updates iupd.

0.01

0.1

1

0 200 400 600 800 1000 1200 1400 1600

N
(r

)

iupd

2-link norm vs iupd for r=2,4,6 and 8 at β = 3



Some of the applications :

1. Ground state of the flux tube.

2. Excited states of the flux tube.

3. Profile of the flux tube.

4. Breaking of the flux tube.

5. 3-quark potential.

6. Glueball spectrum in SU(3) & U(1).

7. Energy momentum tensor of the gluonic field.



Ground state of the flux tube

Potential between static qq̄ pair: (series in r−n)

V (r) ∼ σr + V̂ − c/r + · · ·

String predictions (d=3)
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Perturbation theory

Vpert(r) = σpertr +
g2CF

2π
ln g2r + (higher order terms) (1)



r20f(r) vs r/r0
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fpert(r) : 1-loop perturbation theory.

Dotted line : r20f(r) = 1.65, locates the Sommer scale.



c(r̃) vs r/r0
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cpert(r) : 1-loop perturbation theory with β = 12.5 closest to
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Excited states of the flux tube

Behaviour under charge conjugation and parity − CP

P: Reflect in qq̄ axis : x(κ) → −x(κ)

C: Interchange q and q̄ : x(κ) → x(r − κ)

Combinations ⇔

symmetry channels. string
axis
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Algorithm - Excited states
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A wilson-loop with dif-

ferent sources at the

ends, that lie in the

middle of the time-

slices. The slices with

the solid lines are the

time slices with fixed

lines during the sublat-

tice updates.



W1 W2 W3
r New Old New Old New Old

4 0.44 0.15 2.7 7.0 9.2 100
5 0.63 0.21 2.7 8.3 8.6 100
6 0.86 0.28 2.7 4.5 8.8 100
7 1.1 0.35 2.9 7.3 8.8 100
8 1.4 0.45 3.1 5.5 9.5 100
9 1.7 0.56 3.6 10 11 100
10 2.1 0.74 4.2 11 14 100
11 2.7 1.0 5.8 27 22 100
12 3.5 1.7 8.6 88 44 100

Percentage errors for Wilson loops for energies E1, E2 and E3.

β = 5 , T = 8 with r varying between 4− 8. Time ≈ 1100 mins.

Old method: 730 mesurements with no source averaging.

New method: 50 mesurements with 12000 updates for source

averaging.

2-link averaging was same for both methods.



Energy of the string excited states

L.O. En = σr + µ +
π
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We will look mostly at the energy difference En − Em.

Correction factors

W (T) = α1e−ET
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.
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E2 equires a better “wave function” as we approach the contin-

uum limit. Used source (b) to couple strongly to E2.

460 measurements with old & new wave functions at β = 7.5.

T Lat ts Ns Nt R 15 16 17 18 19 20

6 363 4 18000 1500 A 0.62 0.73 0.85 0.99 1.23 1.60
10 403 4 18000 2500 B 0.39 0.45 0.50 0.60 0.77 0.99

Left: Parameters of the testruns to compare the operators.

Right: Relative error of Ē2 in % for operator sets A and B.



 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 2  2.2  2.4  2.6  2.8  3  3.2  3.4

E
2

R/r0

Arvis
Ecorr
Set A
Set B

Plot shows E2 values using source (a) and (b). (b) values coin-

cide with corrected (a) values, but have lower error bars.



β r0 a [fm] R {Si} T T [fm] ts size Ns Nt #meas

7.5 6.288 0.0795 7 − 20 A 6 0.477 4 383 36000 1500 4400
10 0.795 403 3000 6468
14 1.113 423 9000 11176
18 1.431 543 18000 6512

10.0 8.660 0.0581 9 − 27 A 8 0.465 6 403 48000 3000 1272, 1272, 1296∗

10 0.581 4 503 3000 2352, 2544, 2568
14 0.814 6 563 6000 6384, 6216, 6480
18 1.046 4 543 12000 8664, 8304, 8472

10.0 8.660 0.0581 9 − 27 B 6 0.349 4 483 48000 1500 2000, 2000∗∗

8 0.465 6 483 3000 2000, 6000
10 0.581 4 503 6000 2000, 7960
14 0.814 6 563 12000 2000, 2000

12.5 10.92 0.0458 11 − 29 A&B 8 0.366 6 483 36000 2000 1000
10 0.458 4 503 3000 4000
14 0.641 6 563 6000 7080
18 0.824 4 723 12000 2080

The number of measurements marked with ∗ corresponds to the R values 9−15,17−21,23−27

and the ones marked with ∗∗ to 9 − 15,17 − 27 respectively.
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Deviations from Nambu-Goto predictions at higher orders have

been reported by Giudice, Gliozzi and Lottini in JHEP 0903

(2009) 104, arXiv 0901.0748 for gauge duals of random

percolation problems.



Conclusions

• For the Lüscher term, the asymptotic value is approached in

a non-monotonic way with r.

• Almost impossible to distinguish the type of the string from

the force data. Differences are at the level of 0.1% at 2r0.

• c(r) suggests that a Nambu-Goto like behaviour is good be-

yond 2.5r0.

• We have found a way to use the multilevel philosophy for the

excited states as well.

• We need to use both the multilevel technique as well as

improved wave functions to go ahead. We have taken a first

step to show how it can be done.


